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a b s t r a c t

Vehicular ad hoc networks have emerged as a promising research area. Designing a realistic
coverage protocol for RSU deployment in vehicular networks presents a challenge due to
different service area, assorted mobility patterns, and resource constraints. In order to
resolve these problems, this paper proposes a geometry-based sparse coverage protocol
GeoCover, which aims to consider the geometrical attributes of road networks, movement
patterns of vehicles and resource limitations. By taking the dimensions of road segments
into account, GeoCover provides a buffering operation to suit different types of road topol-
ogy. By discovering hotspots from trace files, GeoCover is able to depict the mobility patterns
and to discover the most valuable road area to be covered. To solve the resource-constrained
coverage problem, we provide two variants of sparse coverage which take into consider-
ation budget constraints and quality constraints, respectively. The coverage problem is
resolved by both genetic algorithm and greedy algorithm. The simulation results verify that
our coverage protocol is reliable and scalable for urban vehicular networks.

! 2014 Elsevier B.V. All rights reserved.

1. Introduction

Vehicular Ad Hoc Networks (VANETs) have elicited
great interest in both industry and academia. As important
components of the Intelligent Transportation System (ITS),
VANETs assist in improving road safety, traffic control and
infotainment as well as commercial applications [1,2]. To
differentiate from general Mobile Ad Hoc Networks (MAN-
ETs), we note some of the unique characteristics of
VANETs, such as the restricted movement of vehicles, the
rapidly shifting network topology, and the frequent
hand-offs between on-board units (OBUs) and road-side
units (RSUs) [3]. Therefore, VANETs raise several chal-
lenges with regard to coverage, data dissemination, packet
routing, security, privacy, etc.

Coverage is one of the key performance matrix to eval-
uate the Quality of Service (QoS) [4] in the network. It rep-
resents how well services have been supplied in a network.
In order to maintain the network connectivity RSUs are
deployed to fulfil certain coverage quality. An access point
(AP) deployment problem is usually modeled as an optimi-
zation problem under different constraints, such as severe
resource limitations and assorted hostile environmental
conditions [5].

The coverage problem in VANETs focus on covering the
street area where the Vehicle-to-Vehicle (V2V) and Vehi-
cle-to-Infrastructure (V2I) communications occur. Due to
the obstruction from buildings and complex topology, the
feasible region for deployment is fragmentary. Most exist-
ing coverage based deployment protocols treat vehicle net-
works as ideal graphs of nodes and straight lines. Such
simplifications misrepresent real-world road networks,
and the geometrical characteristics of vehicle networks,
such as shape, direction and area. In addition, deploying
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RSUs beside roads rather than intersections can result in
better quality of communication [6].

Sparse coverage is a classic coverage problem for driv-
ing-assistance and business promotion in VANETs [7]. It
focuses on covering critical regions with high traffic flow
or crowded vehicles. Since sparse coverage requires a
lower deployment cost it is suitable for cost-efficient ser-
vices under a tight resource budget.

Assorted mobility pattern of vehicles is another chal-
lenge in sparse coverage problems. Based on the consider-
ation of vehicular movement, there are three types of
coverage for VANETs. Spatial coverage prefers to deploy
RSUs at locations with distinct spatial attributes, such as
intersections and the midpoints of roads. Spatial coverage
is easy to maintain but it fails to consider the mobility of
vehicles. Temporal coverage is another way to deploy
RSUs; it focuses on covering the V2I communications.
However, the movement of vehicles follows the drivers’
own sense so that it is hard to find a certain pattern to
depict the mobility. Spatiotemporal coverage considers
both spatial attributes and temporal characteristics. Exist-
ing research on spatiotemporal coverage either exploits
the classic three traffic flow description [8] or infers hidden
mobility patterns through historical information. Our Geo-
Cover is a type of spatiotemporal coverage.

Aside from the geometrical attributes and vehicular
mobility, sparse coverage suffers the challenge to consider
two types of constraints: budgeted and quality. Budget
constraint in coverage is often treated as the deployment
cost of RSUs as well as the expense of management and
scheduling. Therefore, budgeted coverage keeps the total
cost of RSU deployment under a predefined budget while
maximizing the quality of coverage. Quality constraint in
coverage is a necessary standard for the RSU deployment
to satisfy. It specifies in the lower bound of performance
how well these RSUs are able to cover the service area.
Thus, the qualified coverage guarantees at least a mini-
mum level of coverage while minimizing the total cost of
deployment.

In this paper, we propose a geometry-based sparse cov-
erage protocol GeoCover over urban VANETs to solve the
above-mentioned challenges. To match the geometrical
attributes, the feasible deployment region is defined using
our buffering operation based on the shape, area, and other
features of road systems. To apply the mobility pattern of a
certain area, GeoCover investigates the hotspot area, which
is a region where most vehicles accumulate. The hotspots
are discovered by proposed a-DBSCAN algorithm and mea-
sured by a new metric coverage value. To meet budget and
quality requirements, sparse coverage is derived as Bud-
geted Sparse Coverage (BSC) and Qualified Sparse Coverage
(QSC). We use both genetic algorithm and greedy
algorithm to solve the geometry-based sparse coverage
problem. Through the comparison with related coverage,
the simulation results verify the effectiveness of our
resource constrained coverage.

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 presents the system
model of GeoCover and the definitions of coverage value
and hotspot. The description and derivation of sparse cov-
erage is given in Section 4. Section 5 introduces the genetic

algorithm and greedy algorithm for sparse coverage. Sec-
tion 6 presents the simulation process and the evaluation
results. Section 7 concludes our work.

2. Related work

Coverage is one of the key matrix used to evaluate the
performance of network. Many researches have been done
in order to optimize the deployment of wireless sensor
network [9–11]. Recently the coverage problem in the
VANET has drawn many attentions because the high
mobility of vehicles make the optimal deployment of road-
side units (RSU) harder than in other wireless network.
Affordable and reliable RSU deployment plans over vehic-
ular networks have been studied extensively. Generally,
these plans are classified into spatial coverage, temporal
coverage and spatiotemporal coverage. As application
requirements evolve, there are more specific objectives
for optimization in coverage problems and more reduction
methods designed for the coverage model over VANETs.

Spatial coverage is based on the analysis of spatial attri-
butes of a given road system. Dubey [12] indicate that the
placement of RSUs in the centers of an intersection instead
of at corners will cover more road area. In this way, the
data transmission rate is increased by 15% in the service
area. However, Kafsi et al. [13] note that even though most
vehicles accumulate in congested intersections, the iso-
lated vehicles are more likely to appear in the middle of
road segments or the entering points of the domain. There-
fore, placing RSUs in the middle of the road is a more effi-
cient strategy for avoiding uncovered isolated vehicles.

Liu et al. [14] explore the hidden connectivity in urban
vehicular networks by transferring the original road net-
work into an ‘‘intersection graph’’. According to their
research, the likelihood that the V2I communication occurs
at the intersections is weighted by the length of the road
segments. Also, most of the data disseminations are com-
pleted at the connected dominating set (CDS) on the inter-
section graph. Lee and Kim [15] also consider the
intersections as potential deployment locations of RSUs.
They propose a ranking scheme to order these locations
based on the number of reports sent by taxis within the
communication range of each RSU.

By evaluating the structural properties of road net-
works, some centrality-based coverage strategies come
into being. By simply mapping the crossroads to graph ver-
tices and treating the roads to graph edges, Crucitti et al.
[16] compare five different centrality indices over real geo-
graphic networks: degree, closeness, betweenness,
straightness and information. They indicate that centrality
is applicable to measurements in which some nodes are
more important (central) than others in a network. Based
on the five centrality indices, Do et al. [17] integrate cen-
trality with VANETs and the related connectivity analysis.
They find that centrality metrics would not outperform
density-based strategies, but that they can still offer some
interesting functionalities, such as monitoring the traffic
flow with betweenness centrality.

Kchiche and Kamoun [18] propose a greedy approach
based on group centrality to select the best organization

86 H. Cheng et al. / Ad Hoc Networks 24 (2015) 85–102

Lai yongxuan



of RSUs. Group centrality aims to measure the centrality of
a group rather than of individuals. For each centrality met-
ric, the specific averaging or summing methods are
exploited to obtain the group centrality. Kchiche and
Kamoun succeed in achieving the best performance in
terms of delay and overhead during V2V communication
in their scenario. Through the simulations in [19], the
authors further show that the use of centrality can opti-
mize the performance of VANETs, particularly in low den-
sity areas and in cases of long-distance communication.

Spatial coverage considers only the spatial attributes of
a road network, while failing to consider the mobility of
vehicles. With a better understanding of the communica-
tion system in VANETs, temporal coverage has been
researched widely so as to cover the communications
between high-moving vehicles and fixed RSUs. Abdrabou
and Zhuang [20] study the end-to-end packet delivery
delay in multi-hop VANETs. Since the end-to-end delay
occurs in the packet forwarding, the number of hops is a
good metric for temporal coverage. Wu et al. [21] consider
both the movement of vehicles and multi-hop forwarding.
They developed an analytical model to study the spatial
propagation of information in VANETs. This model can be
used to develop a location where the average delay in
the network is bound by a threshold.

Li et al. [22] consider the method to minimize the aver-
age number of hops from RSUs to gateways. The gateways
are used in their scenario to connect RSUs to the Internet.
In the coverage model, each RSU is connected to both vehi-
cles and a center gateway, so that the optimal deployment
of the gateway assists in improving the performance of
communication. More specifically, they have obtained the
results for optimal deployment of gateways in 1-D vehicu-
lar networks. They also proposed two algorithms for the
placement of the center gateway in 2-D dense vehicular
networks. Their final results show that when the average
number of hops between gateways and RSUs is minimized,
the average capacity of each RSU is also maximized.

Other types of temporal coverage focus on the contacts
of OBUs and RSUs. Trullols et al. [23] seek to maximize the
number of vehicles that make contact with the RSUs and
formulate their problem as a Maximum Coverage Problem.
Even though the formulated problem is NP-hard, the
authors tackle it through heuristic algorithms with differ-
ent levels of complexity. They further formulate the prob-
lem into another version, which is to guarantee that the
majority of vehicular travel is covered by one or more RSUs
for a sufficient amount of time. Lochert et al. [24] present a
landmark-based aggregation scheme for saving travel time
in road networks. They distribute information about the
travel times between prominent points and landmarks
and estimate the travel time savings achieved by a given
vector of active RSU locations. These estimations are then
used as fitness metrics in the genetic algorithm to make
an application-centric optimization of RSU deployment.
They show that optimal placement improves information
dissemination over large distances, especially in a large-
scale city model of VANETs.

Sun et al. [25] mention that the extra overhead time
used for adjusting routes to update certificates could be
improved by optimization of the RSU deployment. To

ensure security and privacy preservation in VANETs, the
authors minimize the time that vehicles reach each RSU
in order to provide a short-time certificate. They model
such an optimal deployment problem as a set-covering
problem which is NP-hard, and solve it with a classical
greedy algorithm. Kaur and Kaur [26] discovered that the
optimistic deployment of RSUs takes too much time due
to its sequential processing. Therefore, they provided a
parallelization-based strategy to place RSUs by using fork
and join algorithms. Their task duplication based schedul-
ing makes full use of the idle time of processors to dupli-
cate the tasks. By using Trivial Database (TDB), the
authors then minimize the parallel time taken to deploy
RSUs with high efficiency and maximum area coverage.

Temporal coverage presents another way to deploy
RSUs, which focuses on covering the V2I communications.
However, the movement of vehicles follows the drivers’
own decisions so that it is hard to find a specific pattern
to depict mobility. Therefore, researchers have proposed
three descriptions according to the traffic flow theory:
the microscopic description, the kinetic description and
the macroscopic description [8]. In the microscopic
description, each vehicle is identified individually through
speed, weather, habits, etc. Assorted factors make the
implementation of a microscopic model difficult. The
kinetic description is a global state description which
shows statistical distribution on each lane for position
and velocity. As for the macroscopic model, it is also a glo-
bal state description incorporating locally averaged quanti-
ties in three major traffic parameters: density, velocity and
flow.

In spatiotemporal coverage, choosing the most suitable
traffic flow model is a very important step. Some research-
ers exploit the classic three traffic flow descriptions men-
tioned before, or infer their own mobility pattern
through historical information. Xiong et al. [27] investigate
a time-stable mobility pattern from realistic traces of
buses, taxis and pedestrians. They observe the mobility
pattern and characterize it with a graph model. After divid-
ing a road system into several non-overlapping uniform
zones, the authors calculate the time-stable transition
probabilities between all zones. They then transfer the sta-
tistical mobility pattern to a time homogeneous Markov
chain. The transferred gateway deployment problem is
then reduced into an NP-hard vertex selection problem.

Zhu et al. [28] remark that the movement of vehicles
shows a strong regularity by mining a large dataset of real
vehicular GPS traces. They model the movement of vehi-
cles by the Markov chain. In this way, the mobility pattern
for vehicles is extracted from the historical vehicular trace
files. Based on the assumption that the future movements
of vehicles are able to be treated as a priori knowledge, the
authors provide efficient algorithms to determine RSU
deployment. If the future traces are unknown, they formu-
late a new objective, which is to maximize the expectation
of the weighted sensing coverage, by taking the random
vehicular mobility into account. They also show that their
greedy algorithm provides a performance guarantee.

To improve the cooperative downloading of data among
vehicles in an urban vehicular network, Fiore and Barcelo-
Ordinas [29] devise a strategy for RSU deployment based
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on vehicular traffic flow analysis. Not all urban roads are
identical and some of them are more congested or have
higher speed limits than others. The authors take all this
into account and thus transfer the road topology into a
graph where vertices are intersections and edges are
streets. Based on this graph, they evaluate the average time
vehicles spend to travel to each edge and redeem the cal-
culation results as traversing volumes. They then propose
that placing RSUs at the crossing-volume area will maxi-
mize the potential for collaboration among vehicles as
relay nodes.

3. System model and definitions

In this section, we discuss the system model for our
geometry-based sparse coverage protocol GeoCover and
give two new definitions for the terms hotspot and coverage
value, in our effort to analyze the historical trace files.

3.1. System model

Sparse coverage over VANETs is designed for traffic
monitoring and management, navigation of cooperative
local services and advertisement delivery. To provide real-
istic coverage, the geometrical attributes, mobility patterns
and resource constraints all merit concern. The GeoCover
algorithm resolves the three issues simultaneously.

Fig. 1 shows the process of GeoCover algorithm. The
algorithm start from obtaining the mobility pattern and
assigning the coverage value for each cell. The valued cells
are then grouped into hotspots by a-DBSCAN algorithm.
Because the two-dimensional properties of a road network
will impact the effects of deployment, we exploit a buffer-
ing operation method, as shown in Figs. 5 and 6, to mesh
the buffer regions along the road segments. After the buf-
fering operation, we resolve the BSC and the QSC based
on different optimization objectives. The BSC problem
and the QSC problem are modeled as the Budgeted Maxi-
mum Coverage (BMC) problem [30] and the Set Cover
Problem (SCP) [31], respectively. It has been proven that
the BMC is a maximum version of the SCP [32], so that
the BSC problem and the QSC problem can be understood
in terms of each other. Due to the NP-hardness of the
BSC problem and the QSC problem, we first propose a
genetic algorithm to resolve the problems, and then
employ a greedy algorithm to provide the performance
guarantee for our solution.

3.2. Definition of coverage value

Definition 1. Coverage value: The value of a specific region
that measures how much communication volume is
covered.

Because the regions with great amounts of traffic vol-
ume will experience an increased likelihood of communi-
cation, we use coverage value to present the
communication volume of a certain area. The region with
a high coverage value is a valuable region and should be
covered. Based on the probability distribution model pro-
posed in [33] we apply a 2-D Gaussian distribution to vehi-
cle speeds, vehicular density and traffic flow. At each
position, we obtain the probability of parameters and then
use the formula (1) to calculate the coverage value.

High vehicle speed will result in frequent hand-offs, so
that speed is inversely proportional to coverage value. In an
extreme situation, vehicles that are parked or stopped have
the highest likelihood of accomplishing information
exchange with RSUs. Vehicular density and traffic flow
reflect the degree of vehicle accumulation, so that density
and flow are directly proportional to coverage value.

coverage value ¼ flow " density=speed ð1Þ

Fig. 2 shows the assignment of coverage value to a cell-
based road system. The cells with higher traffic flow and
density will be assigned a higher coverage value, which is
represented by an increased color opacity in the figure.

3.3. Definition of hotspot

Definition 2. Hotspot: A group of cells in which the
coverage value is larger than a threshold a.

Hotspot represents the area where most vehicles accu-
mulate. In order to discover the hotspots we divide the area
into fixed-sized cells and assign the corresponding cover-
age value to each cell. A density-based clustering algo-
rithm,a-DBSCAN, is proposed to identify clusters with
irregular and trivial geometry characteristics.

Fig. 1. Process of GeoCover. Fig. 2. Assignment of coverage value.
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The a-DBSCAN algorithm is a revised version of classical
density-based algorithm DBSCAN [34]. DBSCAN defines
two parameters: ! (searching radius) and minPts (mini-
mum points required to form a cluster). The algorithm
starts from an arbitrary core point; and, it then absorbs
all the neighbor points within distance ! as its cluster
members. When the number of neighboring nodes reaches
the minimum requirement (minPts), a cluster is formed. In
a-DBSCAN, each cell is a point in the algorithm. The origi-
nal parameter minPts is replaced by a, the threshold of the
average coverage value. Since our GeoCover algorithm
deploys RSUs beside roads to cover the street area only,
the discovery of hotspots does not consider the obstacles
of building in urban area.

Algorithm 1. a-DBSCAN – hotspot discovery algorithm

Algorithm 1 shows the pseudocode of a-DBSCAN algo-
rithm. Based on a different a, another parameter ! is able
to be estimated by the k-dist graph [34], so that we treat
the threshold a as the pacing factor. If the average coverage
value of cell g’s neighbors is less than a, this cell will be
treated as noise and removed. Conversely, g is a core point
and a new hotspot will be formed. The process is repeated
until all of the cells have been visited and all density-
reachable areas have been defined. The final output of a-
DBSCAN is a set of hotspots S ¼ fH1;H2;H3; . . . ;Hng.

4. Geometry-based sparse coverage

In this section, we discuss how to deploy RSUs based on
hotspots and how to exploit geometrical attributes of road
segments. We first propose the formation of a sparse cov-
erage model. We then propose the buffering operation to
define the candidate deployment locations. Finally, the
two variants of the sparse coverage, BSC and QSC, are pro-
posed to meet different optimization objectives.

4.1. Sparse coverage model

Fig. 3 is an example of sparse coverage model. Each
cluster (hotspot) in Fig. 3(a) was discovered by the a-
DBSCAN algorithm and contains the cells to be covered.

Assuming the RSU’s propagation model is a disk; RSUs
are deployed on the buffered roadside area which is also
divided into cells. By choosing different roadside cells to
deploy RSUs we can cover the hotspots as much as we
can and meet the budget or quality requirement. Fig. 3(b)
is an example of the cell-based sparse coverage on a hot-
spot. In Fig. 3(b), there are 14 different cells
fg1; g2; g3; . . . ; g14g. Each cell owns a coverage value. If, in
a road network scenario, there are a total of 6 RSUs
fA;B;C;D; E; Fg, then a possible deployment is shown as
the following:

RSUA ¼ fa " 2; ab; adg
RSUB ¼ fab; bc " 2; bcdg
RSUC ¼ fc; bc " 2; bcdg
RSUD ¼ fdf ;de " 3; ad; bcdg
RSUE ¼ fde " 2g
RSUF ¼ ff " 3; dfg

The label of a cell is a combination of all the RSUs that
cover the cell. For example, cell bcd is covered by three
RSUs: b; c and d. The road cells with same label belong to
the same set: in the case where the two de cells belong
to set de. As for the cells only covered by one RSU, they
are regarded as their own set. Thus, there are a total of 9
set in Fig. 3(b) as shown by the color code. For each set,
we define its weight w as the mean coverage value of all
the road cells in the set.

Therefore, a sparse coverage is a problem to cover all
the set, S ¼ fS1; S2; . . . ; Smg using a set of RSU
U ¼ fU1;U2; . . . ;Ung Each section Sj is associated with a
weight w and each RSU Ui is associated with a cost c, the
expense used to deploy the RSU.

4.2. Buffering operation

After the design of the sparse coverage model, the buf-
fering operation is exploited to match the geometrical
attributes of road segments. Because the area around road
segments is the primary zone in which to place RSUs, the
definition of a feasible region is required in order to define
the extracted roadside area. Fig. 4(a) represents the vehicle
networks in the Yukon Territory of Canada obtained from
ArcGIS [35]. We can see in the figure that real-world road
networks consists of all kinds of crossings, turns, forks,
curves, etc. Even though these elements are of various
shapes and areas, the buffering operation is still able to
pick up the feasible region according to different road geo-
metrical characteristics [36].

Fig. 5 provides a sketch of the buffering operation on
straight road segments. The coordinates of roads are
known; thus we simply add buffering lines, the shadow
parts shown in Fig. 5, on both sides of the road segment
along the edges of the street. Then, by defining the width
of the buffering line, the feasible region is marked. The
width of the buffering-line region is adjusted according
to different RSU transmission ranges. Since the candidate
deployment locations should be as close as possible to
the road area and avoid occupy the road space, we set
widthbuffer ¼ widthroad in our simulation. By adding buffer
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regions along both sides of the roads, we can divide the
buffers into cells and treat each cell as a candidate deploy-
ment location.

Even if the road segment is in the shape of a curve, the
buffering operation also works by breaking a curve into a
series of line segments. Fig. 6 shows the buffering opera-
tion on curved road segments. This idea is the same as
those used for the approaches in OpenStreetMap [37]
when circular arcs are represented.

With the help of the buffering operation, we extract the
feasible deployment region from the original road net-
works. Fig. 4(b) shows the Yukon Territory after the buffer-
ing operation. The shadow area in Fig. 4(b) represents the
feasible region.

4.3. Budgeted Sparse Coverage

In the field of sparse coverage, a common requirement
for deployment is to maximize the total deployment value
of infrastructures under a predefined budget on the avail-
able number of RSUs. We define this problem as Budgeted

Sparse Coverage (BSC) and the definition is shown as
follows.

Fig. 3. Formation of sparse coverage model.

Fig. 4. Illustration of buffering operation.

Fig. 5. Buffering operation on straight roads.
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Definition 3. Budgeted Sparse Coverage: A deployment of
RSUs provides Budgeted Sparse Coverage to a road net-
work R, if the average weight of areas cover by selected
RSUs is maximized; and, the total deployment cost is no
larger than a given budget B.

The ILP formulation of the optimization of the BSC prob-
lem is shown as follows:

maximize BSCðxÞ ¼
Xm

j¼1

yj %wj

subject to
Xn

i¼1

xi % ci 6 B

X

Sj2Ui

xi P yi

xi; yj 2 f0;1g; 81 6 i 6 n; 1 6 j 6 m

ð2Þ

where xi and yj represent the 0–1 selection of RSUs and sec-
tions. If xi ¼ 1 then the corresponding location is selected
to deploy RSUs. If yj ¼ 1 then the corresponding section is
covered by at least one RSU.

We reduce the BSC problem to the BMC problem [30] by
considering the sections as a domain of elements and RSUs
as a subset of sections. Since the BMC problem is a well-
known NP-hard problem, our BSC problem is also NP-hard.
To solve such an NP-hard area coverage problem, we use a
natural framework for the Greedy Cover algorithm, as
shown in Algorithm 3.

4.4. Qualified Sparse Coverage

Budget constraints aside, people are sometimes more
concerned about the quality of the RSU deployment rather
than the cost of the infrastructures. Thus, it raises the ques-
tion of how to minimize the total expense of RSUs while

guaranteeing quality and value. We refer to this problem
as Qualified Sparse Coverage (QSC), and the formal defini-
tion is as follows.

Definition 4. Qualified Sparse Coverage: A deployment of
RSUs provides Qualified Sparse Coverage to a road network
R, if the total deployment cost of selected candidate RSUs is
minimized; and, the average weight of covered areas
meets the lowest coverage value threshold Q.

The ILP formulation of the QSC problem is shown as
follows:

minimize QSCðxÞ ¼
Xn

i¼1

xi % ci

subject to
Xm

j¼1

yj %wj P Q

X

Sj2Ui

xi P yi

xi; yj 2 f0;1g; 81 6 i 6 n; 1 6 j 6 m

ð3Þ

where xi and yj represent the 0–1 selection of RSUs and sec-
tions. If xi ¼ 1 then the corresponding location is selected
to deploy RSUs. If yj ¼ 1 then the corresponding section is
covered by at least one RSU.

We reduce the QSC problem to the SCP [31] by consid-
ering the sections as the universe of elements and RSUs as a
set of subsets of sections. Since SCP is a classical NP-hard
problem, our QSC problem is also NP-hard. Based on the
study of Khuller et al. [30], the unit cost version of the
MCP is a straightforward reduction from the SCP. There-
fore, the QSC problem is a minimum variant of the BSC
problem. Both of the NP-hard problems can be approxi-
mately solved by the Greedy Cover algorithm.

Fig. 6. Buffering operation on curved roads.
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5. Algorithms and analysis

In this section, we propose two types of algorithms to
resolve the GeoCover model. The first algorithm is the
genetic algorithm, which aims to search for the best solu-
tion globally in the solution space. Because it is difficult
to guarantee the performance of the genetic algorithm,
we provide a greedy algorithm, BSCunit , to solve the cover-
age problem. BSCunit is able to provide 1& 1=e and ln nþ 1
approximations for the BSC problem and the QSC problem,
respectively.

5.1. Genetic algorithm (GeoCover-genetic)

Due to the NP-hard characteristics of the GeoCover
problem, we use the genetic algorithm (GA) to find an opti-
mal RSU placement solution with a fixed RSU transmission
range. Algorithm 1 is the algorithmic description of GA.

Algorithm 2. Genetic algorithm

5.1.1. Encoding and initialization
The final output of BSC is the position of all RSUs, so we

encode the coordinates of each RSU as the gene. In equa-
tion gene ¼ ðlx; lyÞ; lx and ly are 2-dimensional coordinates
of an AP. Because each solution is a set of RSU coordinates,
we encode the deployment solution as the chromosome. In
formula chromosome ¼ ðg1; g2; g3; . . . ; gnÞ; g is the gene. If
the number of RSUs is set to n, each chromosome consists
of n different genes.

We generate a group of chromosomes, known as popu-
lation, to elect the optimal solution in GA. At the beginning,
we generate m different chromosomes in an initial popula-
tion through normal distribution. Each generation has a
population, which is defined as P ¼ ðc1; c2; c3; . . . ; cmÞ.

5.1.2. Selection, reproduction and termination
In the selection loop of GA, chromosomes with higher

priority will be selected into the next generation. The fit-
ness function is used to rank chromosomes at each gener-
ation. The fitness function is as follows:

R ¼
PGroad

i¼1 Ai

Groad
;

Ai ¼ 1jqi # CRSU

Ai ¼ 0jqi å CRSU

!

We set the coverage ratio R as the rank criterion. To
facilitate computation, we divided the area of feasible

regions and roads into 1 m( 1 m cells. Each cell is repre-
sented by qi. If a cell is within the transmission range of
at least one AP, we claim that the cell is covered. CRSU is
the set of cells covered by RSUs and Groad is the number
of cells in the road area.

In the reproduction stage, we used the ‘‘cut and splice’’
approach to generate new offspring. We selected the same
crossover point c on two parent chromosomes; and, we cut
each chromosome into two parts at the position of c. We
then exchanged the second part of two parents so that
two new children chromosomes were generated. The ‘‘cut
and splice’’ approach is as follows:

child10 ¼ g1
1; g

1
2; . . . ; g1

c

" #
g2

cþ1; g
2
cþ2; . . . ; g2

n

" #" #

child20 ¼ g2
1; g

2
2; . . . ; g2

c

" #
g1

cþ1; g
1
cþ2; . . . ; g1

n

" #" #

Reproduction from crossover may only result in a
locally optimal solution, since the genes only come from
parents. Therefore, we used mutation to produce new
information for genes. Mutation happens with a predefined
probability pð0 6 p 6 1Þ, which is very small, so that it will
not develop into an intolerable influence. Because a gene is
denoted by two-dimensional coordinates, we chose to add
a random offset e to the coordinate value. The choice of e
should be applied very carefully in order to avoid genetic
drift. Therefore, we have set the offset value to the same
size as the cell size so that every time the mutation hap-
pens the position of an RSU only moves to its neighbor cell.
The mutation function is shown below:

gene0 ¼ lx þ e; ly þ e
" #

When the fitness of a chromosome exceeds threshold (i.e.
90%), we claim that the optimal solution for node distribu-
tion has been found. The algorithm will then terminate. To
guarantee the termination of evolution, we also bound the
number of generations by 1000. The algorithm will termi-
nate and out the best result if the generation is over 1000
(see Table 1).

5.1.3. Time complexity
The selection of population size and mutation probabil-

ity may actually lead GA to converge towards local optimal
positioning or even genetic drift. But it is impractical to
define the upper and lower bounds, for those parameters
and genetic algorithms do not scale well with complexity.
Theoretically speaking, the time complexity of our GA is
Oðgen " ðselþ croþmutÞÞ. The number of generations is
denoted by gen, which is a constant. If TðRÞ denotes the
computational cost of the fitness function, jPj represents
the size of the population, and TðsortingÞ is the complexity

Table 1
Genetic algorithm parameters.

Parameter Value

GA population size 100
GA crossover Single point
GA mutation offset 2
GA generation 1000
GA fitness threshold 90%
Cost per RSU 1
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of sorting; thus, sel, which is set as the time complexity of
selection, should be maxðTðRÞ " jPj; TðsortingÞÞ. The time
complexity of crossover is denoted by cro, which is
OðjPj2Þ while mut is the computational cost of mutation,
which is Oð1Þ (the product of probability p and single
mutation Oð1Þ). Because the complexity of GA is hard to
determine through pure theory, the running time of GA
in a practical simulation is more meaningful for analysis.

5.2. Greedy algorithm (GeoCover-greedy)

Although GA is able to provide the best global solution
by heuristically searching the solution space, it is hard to
guarantee an approximation for an optimal deployment
solution. We design a greedy algorithm to solve the geom-
etry-based sparse coverage problem instead. Algorithm 3,
Greedy Cover, is the basic framework for the greedy algo-
rithm on the general coverage problem.

Algorithm 3. Greedy Cover – Greedy algorithm

Based on the Greedy Cover framework, we propose a
unit-profit-version greedy algorithm, BSCunit , to obtain an
approximate optimal solution in polynomial time. Algo-
rithm 4 describes the details of the BSCunit algorithm. In
our greedy algorithm BSCunit , each set Ui has a unit cost
and the goal is to find a subset of U so that the total weight
of covered S is maximized. Assuming there are only K RSUs
available for deployment under the budget B, we can use
the enumeration technique to select subsets of U with

Fig. 7. Downtown map of Ottawa.
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the cardinality of K. Let wðU0Þ be the total weight of all ele-
ments covered by RSUs in U0 and cðU0Þ be the total deploy-
ment cost of all RSUs in U0. The output of BSCunit is the
candidate deployment solution D with maximum weight.
Since every time we choose the best candidate deployment
location based on a ranking scheme, the total time com-
plexity of Greedy Cover framework is OðKlgKÞ.

Because the BSC problem and the QSC problem are
interchangeable, both coverage problems can be solved
by the Greedy Cover framework, so it is known as the
BSCunit algorithm. However, due to the different optimiza-
tion objectives, BSCunit results in different approximations
in the BSC problem and the QSC problem.

Algorithm 4. BSCunit – Greedy algorithm

Theorem 1. BSCunit achieves an approximation factor of
1& 1=e for the BSC problem.

Since the proof of BSCunit algorithm is similar to the
proof of greedy algorithms used in the BMC problem [30]
and MCP [38], we simply declare the process of the proof.
Let OPT denote the sections covered by optimal solution D

for the BSC problem, Ui denote the new sections added at
i-th iteration, and U0i ¼

Pi
j¼1Ui and bUi ¼ OPT & U0i. It is obvi-

ous that U0 ¼ 0;U0i is the sections already covered by the
algorithm at iteration i and bU0 ¼ OPT.

We first prove the following two lemmas:

Lemma 1. wðUiþ1ÞP wðbUiÞ=K.

Proof. At each iteration, BSCunit selects the new RSUs with
the maximum unit weight of the others. Since the optimal
solution uses K RSUs to cover OPT subsections, some RSUs
must cover at least 1=K fraction of the OPT subsections.
Therefore, the newly added RSU must cover at least 1=K
of the remaining subsections from OPT, which means
wðUiþ1ÞP wðbUiÞ=K . h

Lemma 2. wðbUiþ1Þ 6 ð1& 1=KÞiþ1 %wðOPTÞ.

Proof. We prove Lemma 2 through induction. The base
case is true when i ¼ 0. We then set the induction hypoth-
esis that wðbUiÞ 6 ð1& 1=KÞi %wðOPTÞ. Finally, we prove the
induction steps:

Fig. 8. Simulation scenario.

Table 2
Simulation parameters.

Simulator NS-2.35/SUMO
Mobility model Car-following model
Area of map 2300 m ( 2100 m
Number of vehicles 100
Vehicle speeds 0–20 m/s
PHY/MAC IEEE 802.11p
Network protocol Mobile IP V4
Routing protocol AODV/GPSR
Transport protocol UDP
Network traffic CBR (160 bytes, 50 pps)
Simulation time 500 s
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wðbUiþ1Þ 6 wðbUiÞ &wðUiþ1Þ

6 wðbUiÞð1& 1=KÞ ðusing Lemma 1Þ

6 ð1& 1=KÞiþ1 %wðOPTÞ ! ð4Þ
Now we start to prove Theorem 1.

Proof. It follows from Lemma 2 that

wðbUiþ1Þ 6 ð1& 1=KÞiþ1 %wðOPTÞ 6 wðOPTÞ=e ð5Þ
Therefore,

wðU0iÞ ¼ wðOPTÞ &wðbUiÞP wðOPTÞ &wðOPTÞ=e

¼ ð1& 1=eÞwðOPTÞ ð6Þ

In the case of BSC, the BSCunit algorithm is complete
when precisely K RSUs have been selected and budget B
has been met. As for QSC, BSCunit ends when the total qual-
ity of covered sections reaches Q. Even though the basic
algorithm framework is the same for the BSC problem
and the QSC problem, the approximated ratio for the opti-
mal solution is different for each problem. h

Theorem 2. The BSCunit algorithm achieves an approximate
factor of 1þ ln n for the QSC problem.

Since the proof of the BSCunit algorithm is similar to the
proof of the greedy algorithms used in the SCP problem
[38], we simply declare the process of the proof. Let OP
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Fig. 9. hotspot Discovery analysis.

Table 3
BSC vs. QSC.

BSC – number of RSUs QSC – coverage value

20 13.567
40 23.948
60 31.752
80 39.681

100 45.225
120 50.513
140 53.588
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Fig. 10. Simulation results with AODV in terms of packet delivery rate.
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denote the optimal solution of the QSC problem, which is
the number of RSUs. Let Ui denote the new sections added
at i-th iteration, and U0i ¼

Pi
j¼1Uiand S represent the union

of optimal covered sections. It is obvious that U0 ¼ 0 and U0i
are the sections already covered by the algorithm at itera-
tion i.

Proof. At stage i, the uncovered sections are S& U0i, which
could be covered by optimal OP RSUs. Therefore, on
average, any RSU in the optimal solution is able to cover
at least ðS& U0iÞ=OP uncovered sections. We can infer the
following equations:

S& U0i 6 U0iþ1 & U0i ð7Þ

In this way,

S& U0iþ1 6 ðS& U0iÞð1& 1=OPÞ 6 Sð1& 1=OPÞiþ1

6 S % e&ðiþ1Þ=OP ð8Þ

At each iteration, we will add a new RSU to the final
solution. When the algorithm reaches the stage of the opti-
mal solution, we let the K represent the number of RSUs in
the optimal solution of our algorithm.

S& U0Kþ1 < OP 6 S& U0K ð9Þ

Therefore,

K 6 iþ OP;OP 6 S % e&K=OP 6 OPð1þ ln S=OPÞ
6 OPð1þ ln rÞ ! ð10Þ

6. Performance evaluation

In this section, we first present the methodology and
experimental setup for the evaluation of the proposed Geo-
Cover algorithm, and then we give the experimental results
and corresponding analysis.

6.1. Methodology and experimental setup

We carried out our simulations on the Network Simula-
tor (NS2) [39] and the Simulation of Urban Mobility
(SUMO) [40]. SUMO is responsible for generating the
mobility trace files in a road network and NS2 exploits
the mobility model files to simulate the V2I communica-
tion with a given protocol stack. To emulate the real sce-
nario, we captured a 2300 m( 2100 m real road network
of Ottawa’s downtown area. It consists of a total of 377
intersections and 776 road segments. Fig. 7 shows the out-
look of our simulation environment on Goggle Maps. The
geometry data of map were obtained from OpenStreetMap,
in which road segments are represented as 2-D polygons
with various shapes.

Fig. 8 is a part of the map shown in SUMO with the
lanes and traffic lights. Vehicles send packets to the RSUs
through a wireless channel. And then RSUs forward pack-
ets to the base station. After all the packets are gathered
in the center server, the feedback will be sent to vehicles
through the RSUs. We use the car-following model [41]
to imitate the real movement of vehicles. The car-following
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Fig. 11. Simulation results with AODV in terms of packet loss.
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model is implemented in SUMO to describe the accelera-
tion of a vehicle using the properties of the car in front of
it. The speed of each vehicle is limited by the real speed
restriction of the corresponding road segment.

Table 2 shows the detailed simulation parameters. Due
to the high mobility of vehicles in VANETs, we used
IEEE802.11p at the physical layer and MAC layer and
mobile IP at the network layer. We analyzed 50 mobility
files, and each file records the running of 100 vehicles in
500 s. We then used NS2 to simulate the V2I communica-
tions between vehicles and RSUs based on 10 different
mobility scenarios. To compare the communication quality
based on different protocols, we simulated our coverage
algorithms and the baseline algorithm with AODV and
GPSR protocols.

6.2. Baseline algorithm

In order to evaluate our GeoCover algorithms, a-cover-
age algorithm [42] is introduced as the baseline algorithm.
The main purpose of a-coverage is to guarantee that there
is at least one point of contact between vehicles and the
RSUs when vehicles move within a meter. In our algo-
rithms, the number of RSUs is limited by a budget.

Acting as a sparse deployment idea, a-coverage also
focuses on the same metric that suggests using fewer RSUs
to provide better coverage performance. It is the first

reason why we chose a-coverage as the baseline algorithm.
Furthermore, the RSUs in a-coverage are deployed in the
center of junctions and the key point we want to prove is
that the placement of RSUs beside roads may be more
efficient than at intersections. In addition, although the
geometry-based coverage strategy is based on spatial
coverage, the key point of our idea is to maximize the con-
tact time between an RSU and vehicles which are similar to
a-coverage. Therefore, we think that the comparison with
a-coverage is better to justify the effectiveness of GeoCover
algorithms.

6.3. Analysis for hotspot discovery

To analyze the performance of the hotspot discovery
algorithm, we compare the number, average size and mean
square deviation of sizes of hotspots with the increase of
threshold a. The result is shown in Fig. 9.

Through Fig. 9, we find that since the high value of a
impedes the creation of hotspots, the number of hotspots
increases rapidly as a grows from 10 to 30. The total num-
ber, however, declines sharply when a increases from 30 to
70. This is because more areas fail to reach the threshold as
a becomes high enough. When a reaches 65, there is no
hotspot that can be discovered.

Unlike the number of hotspots, the average size of hot-
spots and the standard deviation of sizes continually
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Fig. 12. Simulation results with AODV in terms of average end-to-end delay.
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decrease. The reason for this is that the sizes of hotspots
reflect the density of a. When a value is small, many
low-density regions are included in a large cluster so that
the deviation of different hotspots is also large. However,
as the threshold increases the hotspots become purer and
smaller, as does the deviation in sizes of hotspots. Empiri-
cally, we prefer the hotspot that is similar in size to an
RSU’s signal coverage and deviation in sizes that are small
enough. Therefore, in the following experiment, we choose
to use 20 hotspots as a equals 25.

6.4. Analysis for sparse coverage simulation

Since BSC and QSC are symmetrical we can resolve both
problem using the same algorithm. As shown in Table 3, if
we use the number of RSUs as the input for BSC (e.x. 20),
there is a corresponding coverage value (e.x. 13567). Vice
verse, if we take the coverage value as the input for QSC
(e.x. 13567) we can have the corresponding number of
RSUs (e.x. 20) as result. Therefore, in the follow simulation
result, we use only the result of BSC for the illustration.

To analyze the performance of GeoCover algorithms, we
compare the two types of GeoCover algorithms with a-cov-
erage algorithm. We select packet delivery rate, packet loss
and average end-to-end delay as metrics to measure the
quality of communication under three coverage
algorithms: GeoCover-genetic, GeoCover-greedy, and

a-coverage. The packet delivery rate is a metric calculated
by dividing the number of packets received by the target
RSUs through the number of packets originating from vehi-
cles. Packet loss refers to the number of packets dropped in
transmissions, which is used to measure the ability of a
network to relay. Average end-to-end delay refers to the
time taken for a packet to be transmitted across a network
from source node to destination node. To research the
effect of our geographic RSU deployment, the simulation
is designed to compare two routing protocols: AODV and
GPSR. AODV is an on-demand routing protocol for ad hoc
networks using the shortest path algorithm, while GPSR
is a responsive routing protocol using the proposed loca-
tion information of vehicles. By comparing the two routing
protocols, we can find that our GeoCover suits different
routing schemes and the quality of V2I communication
mainly depends on the RSU deployment rather than on
geographic routing.

Fig. 10 represents the packet delivery rate results of
three coverage algorithms simulated on the AODV routing
protocol. As shown in the figures, the packet delivery rate
grows regardless of the transmission range and the type
of coverage. A common phenomenon is that even though
the distance differs between three coverage algorithms as
the transmission range rises, their packet delivery rates
approach the same trend as the number of RSUs increases.
The reason for this is that when there is a small number of
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Fig. 13. Simulation results with GPSR in terms of packet delivery rate.
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RSUs, none of the three coverage algorithms provide
enough opportunity for the vehicles to enter the transmis-
sion range of the RSUs. In this situation, packet loss is
mainly due to a failure to find the routing. However, as
the number of RSUs increases, the coverage area and den-
sity improve. In this way, the communication quality peaks
and the corresponding packet delivery rate reaches the top
level.

Fig. 11 shows the packet loss results of three coverage
algorithms running on the AODV routing protocol. From
the figures, we find that all three coverage algorithms
tend to be stable as the number of RSUs reaches 100.
At this time, the majority of lost packets are caused by
an overflow of queues in each RSU. Therefore, the
increase of RSUs will no longer influence the packet loss.
However, the two types of GeoCover algorithms always
perform better than a-coverage even when the number
of RSUs is as low as 10. This is because GeoCover is based
on covering hotspots, where the most vehicles accumu-
late, while the a-coverage is based on spatial coverage
of roads. Thus, a-coverage only considers the intersec-
tions of road networks to provide length-bounded cover-
age, while GeoCover chooses the most critical regions to
be covered. Therefore, when both types of coverage fail
to completely cover the network, the selection of covered
regions by GeoCover outperforms the a-coverage. The
superiority of the use of hotspot is also reflected in the
trend of the packet loss. Because GeoCover always picks

the most valuable regions to cover, the communication
quality is better than a-coverage as the number of RSUs
and the transmission range changes.

Fig. 12 shows the average end-to-end delay of three
coverage algorithms based on the AODV routing protocol.
The performance of all three coverage algorithms go worse
as the number of RSUs increases. The larger the transmis-
sion range is, the smaller the end-to-end delay becomes.
Even though both types of GeoCover algorithms have sim-
ilar trends in Fig. 12, there is still some difference between
the GeoCover-genetic algorithm and the GeoCover-greedy
algorithm. When the number of deployed RSUs is very
low, both GeoCover algorithms can only cover the center
part of hotspots. In this way, the delay from source nodes
to destination nodes is high due to the loss of hops in some
regions without coverage. As the transmission range
increases and the number of RSUs rises, the two GeoCover
algorithms can completely cover the hotspots and the mar-
ginal regions, so that the effect of coverage reaches the
peak at the same time for both algorithms. However, since
the genetic algorithm heuristically searches for the best
deployed positions by crossover and mutation, this ran-
domness could result in a locally optimal solution and
instability. Thus, the GeoCover-greedy algorithm provides
a good performance guarantee for the RSU deployment,
which results in a better prediction of the coverage quality
than the GeoCover-genetic algorithm within a 95% confi-
dence interval.
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Fig. 14. Simulation results with GPSR in terms of packet loss.
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Figs. 13–15 evaluate the packet delivery rate, packet
loss and average end-to-end delay of the three coverage
algorithms with the GPSR routing protocol. The simulation
results with GPSR are similar to the results with the AODV
protocol. As the RSUs and transmission range increase, the
packet delivery rates of all three coverage algorithms grow.
Meanwhile, the packet loss and average end-to-end delay
decrease. The more RSUs are deployed, the more move-
ments of vehicles are able to be covered. Therefore, the
packet loss appears to be smaller and more stable. Since
the higher coverage ratio means more choice in the infor-
mation transmission and less hops in the packet forward-
ing, the end-to-end delay declines as the RSUs increase.
The scalability of the three coverage algorithms under
GPSR is also the same as for the simulation under AODV.
Compared with GeoCover algorithms, the a-coverage algo-
rithm is more sensitive to the increase of RSUs in terms of
packet delivery rate and packet loss. Generally, the GeoCov-
er-greedy algorithm performs better than the GeoCover-
genetic algorithm. In some cases, the GeoCover-genetic
algorithm can provide higher packet delivery rates than
the GeoCover-greedy algorithm as shown in Fig. 13(b). This
is due to the randomness of heuristic search in genetic
algorithm.

By comparing Figs. 13–15 with Figs. 10–12, the differ-
ence of GPSR and AODV in our simulations is also obvious.
The packet delivery rate in the GPSR simulation result is
better than for the AODV simulation when the other

conditions are the same. This difference of communication
quality is caused by the difference of two routing schemes;
in wireless communication, the packet loss occurs due to
the end of TTL (Time to Live), broadcast storms or colli-
sions. If a routing protocol takes more time to find the
source–destination path in the routing phase, the life-time
of packets will be shortened and the opportunity to drop
the packets will be enlarged. In our scenarios, AODV takes
much time to maintain the positions of mobile nodes in the
routing table, which results in a worse performance than
the position-based routing protocol GPSR.

More specifically, once AODV notices the failure of the
communication link, this protocol will keep the packets
in the buffer queue and then wait for the availability of
the route. When the connectivity is stable, this technique
can increase the packet delivery rate in some cases. How-
ever, in a vehicular network where vehicles move with
high speed and the topology is continuously changing,
the connectivity will become unstable due to the unavail-
able direct or indirect re-delivery. In this situation, the kept
packets in the buffer queue will wait too long to be deliv-
ered and such an average end-to-end delay will aggregate
the fracture of the routing connection. However, in the
event of a link retransmission failure, GPSR applies a differ-
ent method by removing the routing entry of the broken
link before the packets in the buffer are queued [43]. GPSR
then uses the greedy algorithm to find the next hop to for-
ward packets by finding the geographically closest node to
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Fig. 15. Simulation results with GPSR in terms of average end-to-end delay.
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the sink node. The technique used in GPSR is more suitable
for vehicular networks with high mobility and unstable
topology.

To sum up, the GeoCover algorithms outperform the
a-coverage algorithm in our simulation. In a comparison of
both types of GeoCover algorithms, the GeoCover-greedy
algorithm is more stable and scalable than the GeoCover-
genetic algorithm. The packet delivery rate in the GeoCov-
er-greedy algorithm is also higher than the GeoCover-genetic
algorithm, even though the two algorithms perform at the
same level of end-to-end delay when the transmission range
and number of RSUs are large enough. By comparing the
AODV and GPSR, we find the GPSR more suitable for vehicu-
lar networks with high mobility. However, the difference
between AODV and GPSR is not very obvious in our simula-
tion, which means our coverage algorithms are suitable for
different routing schemes to provide a convincing quality
of communication.

7. Conclusion

In this paper, we focus on solving three coverage prob-
lems in urban vehicular networks: road geometry, vehicu-
lar traffic distribution and resource constraints. We
propose a geometry-based sparse coverage protocol Geo-
Cover and two types of coverage algorithms to handle the
problems. To design a practical RSU deployment based on
road geometry, we propose a buffering operation in our
coverage scheme. To capture the pattern of vehicular traf-
fic distribution, we put forward the hotspot discovery
approach to discover the most valuable regions in a road
network. To solve the resource constraint, we formulate
two variants of our sparse coverage algorithm to suit dif-
ferent objectives: budget and quality. By reducing the
BSC and QSC to the MCP and SCT problems respectively,
we design two approximation algorithms, the genetic algo-
rithm and the greedy algorithm, to maximize the quality of
coverage while keeping the cost under budget. Our simula-
tions in NS2 prove that the proposed algorithms perform
with better scalability and stability compared with
a-coverage.

In our future work, we plan to extend our research to
the connectivity and scheduling issues in VANETs. Connec-
tivity measures how reliable the data dissemination of
time-critical information will be in VANETs. It is an impor-
tant metric in ad hoc networks. Scheduling means the con-
trol of RSU status in a vehicular network. Since the RSUs
can be either active or reactive, the redundancy of energy
and coverage can be saved effectively.
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